First variation formula in Wasserstein spaces over compact Alexandrov spaces

نویسندگان

  • Nicola Gigli
  • Shin-ichi Ohta
چکیده

We extend results proven by the second author ([Oh]) for nonnegatively curved Alexandrov spaces to general compact Alexandrov spacesX with curvature bounded below: the gradient flow of a geodesically convex functional on the quadratic Wasserstein space (P(X),W2) satisfies the evolution variational inequality. Moreover, the gradient flow enjoys uniqueness and contractivity. These results are obtained by proving a first variation formula for the Wasserstein distance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gradient Flows on Wasserstein Spaces over Compact Alexandrov Spaces

We establish the existence of Euclidean tangent cones on Wasserstein spaces over compact Alexandrov spaces of curvature bounded below. By using this Riemannian structure, we formulate and construct gradient flows of functions on such spaces. If the underlying space is a Riemannian manifold of nonnegative sectional curvature, then our gradient flow of the free energy produces a solution of the l...

متن کامل

Absolute Continuity of Wasserstein Geodesics in the Heisenberg Group

In this paper we answer to a question raised by Ambrosio and Rigot [2] proving that any interior point of a Wasserstein geodesic in the Heisenberg group is absolutely continuous if one of the end-points is. Since our proof relies on the validity of the so-called Measure Contraction Property and on the fact that the optimal transport map exists and the Wasserstein geodesic is unique, the absolut...

متن کامل

Topological regularity theorems for Alexandrov spaces

Since Gromov gave in [G1], [G2] an abstract definition of Hausdorff distance between two compact metric spaces, the Gromov-Hausdorff convergence theory has played an important role in Riemannian geometry. Usually, Gromov-Hausdorff limits of Riemannian manifolds are almost never Riemannian manifolds. This motivates the study of Alexandrov spaces which are more singular than Riemannian manifolds ...

متن کامل

Heat Kernel Comparison on Alexandrov Spaces with Curvature Bounded Below

In this paper the comparison result for the heat kernel on Riemannian manifolds with lower Ricci curvature bound by Cheeger and Yau [CY81] is extended to locally compact path metric spaces (X, d) with lower curvature bound in the sense of Alexandrov and with sufficiently fast asymptotic decay of the volume of small geodesic balls. As corollaries we recover Varadhan’s short time asymptotic formu...

متن کامل

Harmonic Functions on Alexandrov Spaces and Their Applications

The main result can be stated roughly as follows: Let M be an Alexandrov space, Ω ⊂M an open domain and f : Ω→ R a harmonic function. Then f is Lipschitz on any compact subset of Ω. Using this result I extend proofs of some classical theorems in Riemannian geometry to Alexandrov spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010